0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 SlicingProof (LOWER BOUND(ID), 0 ms)
↳4 CpxRelTRS
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 typed CpxTrs
↳7 OrderProof (LOWER BOUND(ID), 0 ms)
↳8 typed CpxTrs
↳9 RewriteLemmaProof (LOWER BOUND(ID), 399 ms)
↳10 BEST
↳11 typed CpxTrs
↳12 RewriteLemmaProof (LOWER BOUND(ID), 135 ms)
↳13 BEST
↳14 typed CpxTrs
↳15 RewriteLemmaProof (LOWER BOUND(ID), 69 ms)
↳16 BEST
↳17 typed CpxTrs
↳18 LowerBoundsProof (⇔, 0 ms)
↳19 BOUNDS(n^1, INF)
↳20 typed CpxTrs
↳21 LowerBoundsProof (⇔, 0 ms)
↳22 BOUNDS(n^1, INF)
↳23 typed CpxTrs
↳24 LowerBoundsProof (⇔, 0 ms)
↳25 BOUNDS(n^1, INF)
↳26 typed CpxTrs
↳27 LowerBoundsProof (⇔, 0 ms)
↳28 BOUNDS(n^1, INF)
f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))
f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))
They will be analysed ascendingly in the following order:
f = g
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_h2_0(+(1, 0)))
Induction Step:
g(gen_h2_0(+(1, +(n4_0, 1)))) →RΩ(1)
h(g(gen_h2_0(+(1, n4_0)))) →IH
h(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
f(gen_h2_0(0))
Induction Step:
f(gen_h2_0(+(n185_0, 1))) →RΩ(1)
g(gen_h2_0(+(n185_0, 1))) →RΩ(1)
h(f(gen_h2_0(n185_0))) →IH
h(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
The following defined symbols remain to be analysed:
g
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_h2_0(+(1, 0)))
Induction Step:
g(gen_h2_0(+(1, +(n432_0, 1)))) →RΩ(1)
h(g(gen_h2_0(+(1, n432_0)))) →IH
h(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
g(gen_h2_0(+(1, n432_0))) → *3_0, rt ∈ Ω(n4320)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
No more defined symbols left to analyse.
Lemmas:
g(gen_h2_0(+(1, n432_0))) → *3_0, rt ∈ Ω(n4320)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
No more defined symbols left to analyse.
Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
No more defined symbols left to analyse.
Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
No more defined symbols left to analyse.